EECE 210 – Quiz 1 September 28, 2015

V_{SRC}

′s

12 V

4%

- **A.** Determine *I* and V_{S} , assuming $V_{SRC} = 2$ V and
 - $I_{SRC} = 1 \text{ A}.$
- **Solution:** From KCL at the upper node of I_{SRC} , $I + I_{SRC} = 0$, or

 $I = -I_{SRC}$; from KVL around the mesh, starting from

the bottom node and going clockwise, $12 - V_{SRC} + V_S = 0$, or $V_S = -12 + V_{SRC}$

Version 1: $V_{SRC} = 2 \text{ V}$, $I_{SRC} = 1 \text{ A}$; I = -1 A, $V_S = -10 \text{ V}$

Version 2: $V_{SRC} = 3 \text{ V}$, $I_{SRC} = 2 \text{ A}$; I = -2 A, $V_S = -9 \text{ V}$

Version 3: $V_{SRC} = 4 \text{ V}$, $I_{SRC} = 3 \text{ A}$; I = -3 A, $V_S = -8 \text{ V}$

Version 4: $V_{SRC} = 5 \text{ V}$, $I_{SRC} = 4 \text{ A}$; I = -4 A, $V_S = -7 \text{ V}$

Version 5: $V_{SRC} = 6 \text{ V}$, $I_{SRC} = 5 \text{ A}$; I = -5 A, $V_S = -6 \text{ V}$

4%

B. Determine the power actually delivered or absorbed by each source in the preceding problem.

Solution: Power absorbed by $I_{SRC} = V_S I_{SRC}$; power delivered by 12 V source is 12*I*; power absorbed by V_{SRC} is V_{SRC} .

Version 1: $V_{SRC} = 2 \text{ V}$, $I_{SRC} = 1 \text{ A}$, I = -1 A, $V_S = -10 \text{ V}$; power absorbed by $I_{SRC} = V_S I_{SRC} = -10 \text{ W}$, source actually delivers 10 W, power delivered by 12 V source is 12I = -12 W, source actually absorbs 12 W; power absorbed by V_{SRC} is $V_{SRC}I = -2W$, source actually delivers 2 W. **Version 2:** $V_{SRC} = 3 \text{ V}$, $I_{SRC} = 2 \text{ A}$, I = -2 A, $V_S = -9 \text{ V}$; power absorbed by $I_{SRC} = V_S I_{SRC} = -18 \text{ W}$, source actually delivers 18 W, power delivered by 12 V source is 12I = -24 W, source actually absorbs 12 W; power absorbed by V_{SRC} is $V_{SRC}I = -6 \text{ W}$, source actually delivers 6 W.

Version 3: $V_{SRC} = 4 \text{ V}$, $I_{SRC} = 3 \text{ A}$, I = -3 A, $V_S = -8 \text{ V}$; power absorbed by $I_{SRC} = V_S I_{SRC} = -24 \text{ W}$, source actually delivers 24 W, power delivered by 12 V source is 12I = -36 W, source actually absorbs 36 W; power absorbed by V_{SRC} is $V_{SRC}I = -12 \text{ W}$, source actually delivers 12 W.

Version 4: $V_{SRC} = 5$ V, $I_{SRC} = 4$ A, I = -4 A, $V_S = -7$ V; power absorbed by $I_{SRC} = V_S I_{SRC} = -28$ W, source actually delivers 28, power delivered by 12 V source is 12I = -48 W, source actually absorbs 48 W; power absorbed by V_{SRC} is $V_{SRC}I = -20$ W, source actually delivers 20 W.

Version 5: $V_{SRC} = 6$ V, $I_{SRC} = 5$ A, I = -5 A, $V_S = -6$ V; power absorbed by $I_{SRC} = V_S I_{SRC} = -30$ W, source actually delivers 30, power delivered by 12 V source is 12I = -60 W, source actually absorbs 60 W; power absorbed by V_{SRC} is $V_{SRC}I = -30$ W, source actually delivers 30 W.

4%

C. Determine the current I_s and the power dissipated in the 20 Ω resistor, assuming $V_{SRC} = 20$ V.

Solution: $20||80 = 20 \times 80/(20 + 80) = 16 \Omega$;

 $40||60 = 40 \times 60/(40 + 60) = 24 \Omega$; $16 + 24 = 40 \Omega$;

 $I_{\rm S}$ = $V_{\rm SRC}$ /40 A ; $I_{\rm S}$ divides between the 20 Ω and 80 Ω

resistors in the ratio of 4:1. Hence, the current in the 20 Ω resistor is $4I_{S}/5 = A$, and the

power dissipated is $20(4I_S/5)^2 = 12.8I_S^2$ W.

Version 1: $V_{SRC} = 20$ V; $I_S = 20/40 = 0.5$ A, $P_{20\Omega} = 12.8 I_S^2 = 3.2$ W

Version 2: $V_{SRC} = 30$ V; $I_S = 30/40 = 0.75$ A, $P_{20\Omega} = 12.8 I_S^2 = 7.2$ W

Version 3: $V_{SRC} = 40$ V; $I_S = 40/40 = 1$ A, $P_{20\Omega} = 12.8 I_S^2 = 12.8$ W

Version 4: $V_{SRC} = 50$ V; $I_S = 50/40 = 1.25$ A, $P_{20\Omega} = 12.8 I_S^2 = 20$ W

Version 5: $V_{SRC} = 60$ V; $I_S = 60/40 = 1.5$ A, $P_{20\Omega} = 12.8 I_S^2 = 28.8$ W.

4%

D. Determine the current *I* by transforming both linear-output current sources to their equivalent linear-output voltage sources, assuming $R = 5 \Omega$.

Solution: The transformed sources are as shown. It follows that I = 50/(R + 5) A. **Version 1:** $R = 5 \Omega$; I = 50/(R + 5) = 5 A **Version 2:** $R = 10 \Omega$; I = 50/(R + 5) = 10/3 A **Version 3:** $R = 15 \Omega$; I = 50/(R + 5) = 2.5 A **Version 4:** $R = 20 \Omega$; I = 50/(R + 5) = 2 A **Version 5:** $R = 25 \Omega$; I = 50/(R + 5) = 5/3 A.

4%

1. The voltage *v* across a device and the current *i* through the device are as shown. Determine the largest value of the magnitude of the energy absorbed or delivered by the device during the interval 0 < t < 3 s, assuming $V_0 = 1$ V.

Solution: The largest magnitude of the energy absorbed occurs at t = 2 s, and is $w(2) = (1/2)(V_0 \times 2)(-1) = -V_0$ J.

Version 1: $V_0 = 1$ V; $w(2) = -V_0 = 1$ J delivered

Version 2: $V_0 = 2 \lor$; $w(2) = -V_0 \equiv 2 \lor$ delivered **Version 3:** $V_0 = 3 \lor$; $w(2) = -V_0 \equiv 3 \lor$ delivered **Version 4:** $V_0 = 4 \lor$; $w(2) = -V_0 \equiv 4 \lor$ delivered **Version 5:** $V_0 = 5 \lor$; $w(2) = -V_0 \equiv 5 \lor$ delivered.

4%

2. Element 'A' absorbs 4 W when I_{SRC} = 3 A. Determine the power delivered or absorbed by the 2 A source.
Solution: The current through 'A' is (I_{SRC} - 2) A; V_A = 4/(I_{SRC} - 2) V; the power absorbed by the 2 A source Is P_{2A} = 8/(I_{SRC} - 2) W.
Version 1: I_{SRC} = 3 A; P_{2A} = 8/(I_{SRC} - 2) = 8 W absorbed
Version 2: I_{SRC} = 4 A; P_{2A} = 8/(I_{SRC} - 2) = 4 W absorbed
Version 3: I_{SRC} = 5 A; P_{2A} = 8/(I_{SRC} - 2) = 2.67 W absorbed
Version 4: I_{SRC} = 6 A; P_{2A} = 8/(I_{SRC} - 2) = 2 W absorbed

4%

3. Determine I_{SRC} given that $V_X = 5$ V. **Solution:** $6||12 = 72/18 = 4 \text{ k}\Omega$; from current division, $I_X = 3I_{SRC}/(3 + 9) = I_{SRC}/4$ mA; $V_X = -5I_X = -5I_{SRC}/4$ V; hence, $I_{SRC} = -4$ V//5. **Version 1:** $V_X = 5$ V; $I_{SRC} = -4$ mA **Version 2:** $V_X = 10$ V; $I_{SRC} = -8$ mA **Version 3:** $V_X = 15$ V; $I_{SRC} = -12$ mA **Version 4:** $V_X = 20$ V; $I_{SRC} = -16$ mA **Version 5:** $V_X = 25$ V; $I_{SRC} = -20$ mA. $+ V_{X} 5 k\Omega$ $12 k\Omega$ $I_{SRC} = 3 k\Omega$

4%

4. Determine the power delivered or absorbed by the

independent source, assuming $I_{SRC} = 1$ A. **Solution:** From KVL on the RHS mesh, $I_a \times 1 + V_X - 2I_a = 0$, or $V_X = I_a$ V; from KCL at the upper node, with I_a replaced by V_X , $3V_X = V_X + I_{SRC}$, which gives $V_X = I_{SRC}/2$ V; independent source delivers a power $P = (I_{SRC})^2/2$ W. **Version 1:** $I_{SRC} = 1$ A; P = 1/2 = 0.5 W delivered **Version 2:** $I_{SRC} = 2$ A; P = 4/2 = 2 W delivered **Version 3:** $I_{SRC} = 3$ A; P = 9/2 = 4.5 W delivered

Version 4: $I_{SRC} = 4$ A; P = 16/2 = 8 W delivered **Version 5:** $I_{SRC} = 5$ A; P = 25/2 = 12.5 W delivered.

4%

5. Determine I_S , assuming $V_{SRC} = 6$ V. Solution: The 10 Ω resistor is short-circuited, and the 4 Ω and 5 Ω resistors are in series, the series combination being in parallel with the 3 Ω resistor. This gives an equivalent resistance of $9 \times 3/12 = 9/4 = 2.25 \Omega$. In series with 1.75 Ω , this gives 4 Ω . In parallel with 4 Ω

and in series with 1 Ω , the resistance seen by the source becomes 3 Ω . It follows that $I_S = V_{SRC}/3$ A.

Version 1: $V_{SRC} = 6 \text{ V}$; $I_S = 2 \text{ A}$ Version 2: $V_{SRC} = 9 \text{ V}$; $I_S = 3 \text{ A}$ Version 3: $V_{SRC} = 12 \text{ V}$; $I_S = 4 \text{ A}$ Version 4: $V_{SRC} = 15 \text{ V}$; $I_S = 5 \text{ A}$ Version 5: $V_{SRC} = 18 \text{ V}$; $I_S = 6 \text{ A}$.

4%

6. Determine I_S , assuming $V_{SRC} = 5$ V.

Solution: The three 1 Ω resistors in Y are transformed to three 3 Ω resistors in Δ . The voltage across the 1 Ω resistor is $2I_X$ V. It follows from KVL around the outer loop that $V_{SRC} = 4I_X$, so that the voltage of the rightmost node with respect to the bottom node is $V_{SRC}/2$. From

KCL at the bottom node, $I_S = \frac{V_{SRC}}{2} + \frac{V_{SRC}}{6} + \frac{V_{SRC}}{3} =$

V_{SRC} A.

Version 1: $V_{SRC} = 5 \text{ V}$; $I_S = 5 \text{ A}$ Version 2: $V_{SRC} = 10 \text{ V}$; $I_S = 10 \text{ A}$ Version 3: $V_{SRC} = 15 \text{ V}$; $I_S = 15 \text{ A}$ Version 4: $V_{SRC} = 20 \text{ V}$; $I_S = 20 \text{ A}$ Version 5: $V_{SRC} = 25 \text{ V}$; $I_S = 25 \text{ A}$.

20%

7. Determine the power delivered or absorbed by the dependent source, assuming $V_{SRC} = 1 \text{ V}.$

Solution: Initialize: All given parameters and variables are entered. The nodes are labelled.

Simplify: The circuit is already in a simple enough form.

Deduce: From Ohm's law, the current I_{ac} is $V_X/1 = V_X A$; from KVL around the

mesh on the LHS, the voltage

drop across the 2 Ω resistor is

 $(V_{SRC} - V_X)$, and the current flowing from

 V_{SRC} to node 'a' is $(V_{SRC} - V_X)/2$. From KCL at node 'a',

 $I_{ab} = (V_{SRC} - V_X)/2 - V_X = (V_{SRC} - 3V_X)/2$. From KCL at node 'b', the current through the 2 Ω resistor on the RHS is $I_{bc} = (V_{SRC} - 3V_X)/2 + 2V_X = (V_{SRC} + V_X)/2$. From KVL around the outer loop $V_X - 1 \times (V_{SRC} - 3V_X)/2 - 2 \times (V_{SRC} + V_X)/2 = 0$, or $2V_X - V_{SRC} + 3V_X - 2V_{SRC} - 2V_X = 0$, which gives $V_X = V_{SRC}$. Hence, $V_{bc} = 2 \times (V_{SRC} + V_X)/2 = 2V_{SRC}$. The power delivered by the dependent source is $P = 2V_{SRC}I_a = 4(V_{SRC})^2$ W.

Version 1: $V_{SRC} = 1 \text{ V}; P = 4 \text{ W}$

Version 2: $V_{SRC} = 2 \text{ V}; P = 16 \text{ W}$

Version 3: $V_{SRC} = 3 \text{ V}; P = 36 \text{ W}$

Version 4: $V_{SRC} = 4 \text{ V}; P = 64 \text{ W}$

Version 5: $V_{SRC} = 5 \text{ V}$; P = 100 W.

20%

8. Determine V_0 , given that the six, unmarked Y-connected resistors are 2 Ω each, and assuming $I_{SRC} = 3$ A. Solution: The 2 Ω , Y-connected I_{SRC} (.

connected resistors. 6 Ω are paralleled with each of the outer 3 Ω resistors to give 2 Ω . The resistance in the middle is

6||6||3 = 1.5 Ω. The resistive circuit in the middle becomes as shown. The upper delta is transformed to a Y-connection as shown. 3/5.5 Ω in series with 2 Ω is 14/5.5 Ω. The two 14/5.5 Ω in parallel are 7/5.5 Ω. In series with 4/5.5 Ω, this gives 2 Ω. The resistors reduce to 2 Ω in parallel with 4 Ω and 4/3 Ω; 2 Ω in parallel with 4 Ω is 4/3 Ω; in parallel with 4/3 Ω this gives 2/3 Ω. It follows that $V_0 = 2I_{SRC}/3$ V.

Version 1: $I_{SRC} = 3 \text{ A}$; $V_0 = 2 \text{ V}$ Version 2: $I_{SRC} = 6 \text{ A}$; $V_0 = 4 \text{ V}$ Version 3: $I_{SRC} = 9 \text{ A}$; $V_0 = 6 \text{ V}$ Version 4: $I_{SRC} = 12 \text{ A}$; $V_0 = 8 \text{ V}$ Version 5: $I_{SRC} = 15 \text{ A}$; $V_0 = 10 \text{ V}$.

24 Ω

20 Ω

40 Ω

20%

9. Determine $V_{\rm S}$, assuming $R = 10 \Omega$. Solution: Successive source transformations are applied to 25 V reduce the circuit to a simple enough form. The 25 V source in series with 20 Ω is transformed to a 1.25 A current source in parallel with 20 Ω . In parallel with 80 Ω the resistance is 16 Ω . The 1.25 A current source in parallel with 16 Ω is transformed to a 20 V source in series with 16 Ω . In series with 24 Ω the resistance is 40 Ω . The 20 0.5 A (-V source in series with 40 Ω is transformed to a 0.5 A source in parallel with 40 Ω . In the same manner, the 20 V source in series with 40 Ω on the RHS is transformed to a 0.5 A source in parallel with 40 Ω , as shown. The two 40 Ω resistors in parallel give a resistance of 20 Ω and the two 0.5 A source add to a 1 A source, as shown. From KCL, the current

R 80 Ω Ž 20 V 0.5 A $V_{\rm S}$ 16 Ω 20 Ω**> ≥**80 Ω 1.25 A 20 V R $40 \Omega >$ 40 Ω 0.5 A V_{S} 0.5 A + 1.5 A 0.5R 20 Ω 30 V 1 A + Vs 0.5 A

in the 20 Ω resistor is 1.5 A, and the voltage across the paralleled elements is 30 V. It follows that $V_S = 30 + 0.5R$ V.

- **Version 1:** $R = 10 \Omega$; $V_{\rm S} = 35 V$
- **Version 2:** $R = 20 \Omega$; $V_S = 40 V$
- **Version 3:** $R = 30 \Omega$; $V_S = 45 V$
- **Version 4:** $R = 40 \Omega$; $V_{S} = 50 V$
- **Version 5:** $R = 50 \Omega$; $V_S = 55 V$.