EECE 210 - Quiz 1

September 28, 2015

4\%
A. Determine $/$ and V_{S}, assuming $V_{S R C}=2 \mathrm{~V}$ and $I_{S R C}=1 \mathrm{~A}$.
Solution: From KCL at the upper node of $I_{S R C}, I+I_{S R C}=0$, or $I=-I_{S R C}$; from KVL around the mesh, starting from
 the bottom node and going clockwise, $12-V_{S R C}+V_{S}=0$, or $V_{S}=-12+V_{S R C}$
Version 1: $V_{S R C}=2 \mathrm{~V}, I_{S R C}=1 \mathrm{~A} ; I=-1 \mathrm{~A}, V_{S}=-10 \mathrm{~V}$
Version 2: $V_{S R C}=3 \mathrm{~V}, I_{S R C}=2 \mathrm{~A} ; I=-2 \mathrm{~A}, V_{S}=-9 \mathrm{~V}$
Version 3: $V_{S R C}=4 \mathrm{~V}, I_{S R C}=3 \mathrm{~A} ; I=-3 \mathrm{~A}, V_{S}=-8 \mathrm{~V}$
Version 4: $V_{S R C}=5 \mathrm{~V}, I_{S R C}=4 \mathrm{~A} ; I=-4 \mathrm{~A}, V_{S}=-7 \mathrm{~V}$
Version 5: $V_{S R C}=6 \mathrm{~V}, I_{S R C}=5 \mathrm{~A} ; I=-5 \mathrm{~A}, V_{S}=-6 \mathrm{~V}$

4\%
B. Determine the power actually delivered or absorbed by each source in the preceding problem.
Solution: Power absorbed by $I_{S R C}=V_{S} I_{S R C}$; power delivered by 12 V source is $12 /$; power absorbed by $V_{S R C}$ is $V_{S R C} l$.

Version 1: $V_{S R C}=2 \mathrm{~V}, I_{S R C}=1 \mathrm{~A}, I=-1 \mathrm{~A}, V_{S}=-10 \mathrm{~V}$; power absorbed by $I_{S R C}=V_{S} I_{S R C}=-10$ W , source actually delivers 10 W , power delivered by 12 V source is $121=-12 \mathrm{~W}$, source actually absorbs 12 W ; power absorbed by $V_{S R C}$ is $V_{S R C} I=-2 \mathrm{~W}$, source actually delivers 2 W .
Version 2: $V_{S R C}=3 \mathrm{~V}, I_{S R C}=2 \mathrm{~A}, I=-2 \mathrm{~A}, V_{S}=-9 \mathrm{~V}$; power absorbed by $I_{S R C}=V_{S} I_{S R C}=-18$ W , source actually delivers 18 W , power delivered by 12 V source is $12 \mathrm{I}=-24 \mathrm{~W}$, source actually absorbs 12 W ; power absorbed by $V_{S R C}$ is $V_{S R C} I=-6 \mathrm{~W}$, source actually delivers 6 W.

Version 3: $V_{S R C}=4 \mathrm{~V}, I_{S R C}=3 \mathrm{~A}, I=-3 \mathrm{~A}, V_{S}=-8 \mathrm{~V}$; power absorbed by $I_{S R C}=V_{S} I_{S R C}=-24$ W , source actually delivers 24 W , power delivered by 12 V source is $12 \mathrm{I}=-36 \mathrm{~W}$, source actually absorbs 36 W ; power absorbed by $V_{S R C}$ is $V_{S R C} I=-12 \mathrm{~W}$, source actually delivers 12 W.

Version 4: $V_{S R C}=5 \mathrm{~V}, I_{S R C}=4 \mathrm{~A}, I=-4 \mathrm{~A}, V_{S}=-7 \mathrm{~V}$; power absorbed by $I_{S R C}=V_{S} I_{S R C}=-28$ W , source actually delivers 28 , power delivered by 12 V source is $121=-48 \mathrm{~W}$, source actually absorbs 48 W ; power absorbed by $V_{S R C}$ is $V_{S R C}=-20 \mathrm{~W}$, source actually delivers 20 W.

Version 5: $V_{S R C}=6 \mathrm{~V}, I_{S R C}=5 \mathrm{~A}, I=-5 \mathrm{~A}, V_{S}=-6 \mathrm{~V}$; power absorbed by $I_{S R C}=V_{S} I_{S R C}=-30$ W , source actually delivers 30 , power delivered by 12 V source is $12 I=-60 \mathrm{~W}$, source actually absorbs 60 W ; power absorbed by $V_{S R C}$ is $V_{S R C} I=-30 \mathrm{~W}$, source actually delivers 30 W.

4\%
C. Determine the current I_{s} and the power dissipated in the 20 Ω resistor, assuming $V_{S R C}=20 \mathrm{~V}$.
Solution: $20|\mid 80=20 \times 80 /(20+80)=16 \Omega$;
$40|\mid 60=40 \times 60 /(40+60)=24 \Omega ; 16+24=40 \Omega$;
$I_{S}=V_{S R C} / 40 \mathrm{~A} ; I_{S}$ divides between the 20Ω and 80Ω

resistors in the ratio of $4: 1$. Hence, the current in the 20Ω resistor is $4 I_{s} / 5=\mathrm{A}$, and the power dissipated is $20(4 / s / 5)^{2}=12.8 I_{S}^{2} \mathrm{~W}$.

Version 1: $V_{S R C}=20 \mathrm{~V}$; $I_{S}=20 / 40=0.5 \mathrm{~A}, P_{20 \Omega}=12.8 I_{S}^{2}=3.2 \mathrm{~W}$
Version 2: $V_{S R C}=30 \mathrm{~V} ; I_{S}=30 / 40=0.75 \mathrm{~A}, P_{20 \Omega}=12.8 I_{S}^{2}=7.2 \mathrm{~W}$
Version 3: $V_{S R C}=40 \mathrm{~V} ; I_{S}=40 / 40=1 \mathrm{~A}, P_{20 \Omega}=12.8 I_{S}^{2}=12.8 \mathrm{~W}$
Version 4: $V_{S R C}=50 \mathrm{~V} ; I_{S}=50 / 40=1.25 \mathrm{~A}, P_{20 \Omega}=12.8 I_{S}^{2}=20 \mathrm{~W}$
Version 5: $V_{S R C}=60 \mathrm{~V}$; $I_{S}=60 / 40=1.5 \mathrm{~A}, P_{20 \Omega}=12.8 I_{S}^{2}=28.8 \mathrm{~W}$.

4\%
D. Determine the current / by transforming both linear-output current sources to their equivalent linear-output voltage sources, assuming $R=5 \Omega$.

Solution: The transformed sources are as shown. It follows that $I=50 /(R+5) \mathrm{A}$.

Version 1: $R=5 \Omega ; I=50 /(R+5)=5 \mathrm{~A}$
Version 2: $R=10 \Omega ; I=50 /(R+5)=10 / 3 \mathrm{~A}$
Version 3: $R=15 \Omega ; I=50 /(R+5)=2.5 \mathrm{~A}$

Version 4: $R=20 \Omega ; I=50 /(R+5)=2 \mathrm{~A}$
Version 5: $R=25 \Omega ; I=50 /(R+5)=5 / 3 \mathrm{~A}$.

4\%

1. The voltage v across a device and the current i through the device are as shown. Determine the largest value of the magnitude of the energy absorbed or delivered by the device during the interval $0<t<3 \mathrm{~s}$, assuming $V_{0}=1 \mathrm{~V}$.
Solution: The largest magnitude of the energy absorbed
 occurs at $t=2 \mathrm{~s}$, and is $w(2)=(1 / 2)\left(V_{0} \times 2\right)(-1)=-V_{0} \mathrm{~J}$.
Version 1: $V_{0}=1 \mathrm{~V} ; w(2)=-V_{0} \equiv 1 \mathrm{~J}$ delivered

Version 2: $V_{0}=2 \mathrm{~V} ; w(2)=-V_{0} \equiv 2 \mathrm{~J}$ delivered
Version 3: $V_{0}=3 V$; $w(2)=-V_{0} \equiv 3 \mathrm{~J}$ delivered
Version 4: $V_{0}=4 \mathrm{~V}$; $w(2)=-V_{0} \equiv 4 \mathrm{~J}$ delivered
Version 5: $V_{0}=5 \mathrm{~V}$; $w(2)=-V_{0} \equiv 5 \mathrm{~J}$ delivered.

4\%
2. Element ' A ' absorbs 4 W when $I_{S R C}=3 \mathrm{~A}$. Determine the power delivered or absorbed by the 2 A source.
Solution: The current through ' A ' is $\left(I_{S R C}-2\right) \mathrm{A} ; \mathrm{V}_{\mathrm{A}}=$ $4 /\left(I_{\text {SRC }}-2\right) \mathrm{V}$; the power absorbed by the 2 A source Is $P_{2 A}=8 /\left(I_{S R C}-2\right) \mathrm{W}$.
Version 1: $I_{S R C}=3 \mathrm{~A} ; P_{2 A}=8 /\left(I_{S R C}-2\right)=8 \mathrm{~W}$ absorbed
Version 2: $I_{S R C}=4 \mathrm{~A} ; P_{2 A}=8 /\left(I_{S R C}-2\right)=4 \mathrm{~W}$ absorbed
Version 3: $I_{S R C}=5 \mathrm{~A} ; P_{2 A}=8 /\left(I_{S R C}-2\right)=2.67 \mathrm{~W}$ absorbed
Version 4: $I_{S R C}=6 \mathrm{~A} ; P_{2 A}=8 /\left(I_{S R C}-2\right)=2 \mathrm{~W}$ absorbed

Version 5: $I_{S R C}=7 \mathrm{~A} ; P_{2 A}=8 /\left(I_{S R C}-2\right)=1.6 \mathrm{~W}$ absorbed.

4\%
3. Determine $I_{S R C}$ given that $V_{x}=5 \mathrm{~V}$.

Solution: $6|\mid 12=72 / 18=4 \mathrm{k} \Omega$; from current
division, $I_{X}=3 I_{S R C} /(3+9)=I_{S R C} / 4 \mathrm{~mA} ; V_{X}=-5 I_{X}=$ $-5 I_{\text {SRC }} / 4 \mathrm{~V}$; hence, $I_{S R C}=-4 V_{x} / 5$.

Version 1: $V_{X}=5 \mathrm{~V}$; $I_{S R C}=-4 \mathrm{~mA}$
Version 2: $V_{X}=10 \mathrm{~V}$; $I_{S R C}=-8 \mathrm{~mA}$
Version 3: $V_{X}=15 \mathrm{~V}$; $I_{S R C}=-12 \mathrm{~mA}$
Version 4: $V_{X}=20 \mathrm{~V}$; $I_{S R C}=-16 \mathrm{~mA}$
Version 5: $V_{X}=25 \mathrm{~V}$; $I_{S R C}=-20 \mathrm{~mA}$.

4\%
4. Determine the power delivered or absorbed by the independent source, assuming $I_{S R C}=1 \mathrm{~A}$.
Solution: From KVL on the RHS mesh, $l_{a} \times 1+V_{x}-$ $2 l_{a}=0$, or $V_{x}=l_{a} V$; from KCL at the upper node, with I_{a} replaced by $V_{x}, 3 V_{x}=V_{x}+I_{S R C}$, which gives $V_{x}=$
 $I_{S R C} / 2 \mathrm{~V}$; independent source delivers a power $P=\left(I_{S R C}\right)^{2} / 2 \mathrm{~W}$.
Version 1: $I_{S R C}=1 \mathrm{~A} ; P=1 / 2=0.5 \mathrm{~W}$ delivered
Version 2: $I_{S R C}=2 A ; P=4 / 2=2 \mathrm{~W}$ delivered
Version 3: $I_{S R C}=3 \mathrm{~A} ; P=9 / 2=4.5 \mathrm{~W}$ delivered

Version 4: $I_{S R C}=4 A ; P=16 / 2=8 \mathrm{~W}$ delivered
Version 5: $I_{S R C}=5 A ; P=25 / 2=12.5 \mathrm{~W}$ delivered.

4\%
5. Determine I_{s}, assuming $V_{S R C}=6 \mathrm{~V}$.

Solution: The 10Ω resistor is short-circuited, and the 4Ω and 5Ω resistors are in series, the series combination being in parallel with the 3Ω resistor. This gives an equivalent resistance of $9 \times 3 / 12=9 / 4=2.25 \Omega$. In series with 1.75Ω, this gives 4Ω. In parallel with 4Ω
and in series with 1Ω, the resistance seen by the source becomes 3Ω. It follows that $I_{s}=V_{S R} / 3 \mathrm{~A}$.

Version 1: $V_{S R C}=6 \mathrm{~V}$; $I_{S}=2 \mathrm{~A}$
Version 2: $V_{S R C}=9 \mathrm{~V}$; $I_{S}=3 \mathrm{~A}$
Version 3: $V_{S R C}=12 \mathrm{~V}$; $I_{s}=4 \mathrm{~A}$
Version 4: $V_{S R C}=15 \mathrm{~V} ; I_{s}=5 \mathrm{~A}$

Version 5: $V_{S R C}=18 \mathrm{~V}$; $I_{s}=6 \mathrm{~A}$.

4\%
6. Determine I_{S}, assuming $V_{S R C}=5 \mathrm{~V}$.

Solution: The three 1Ω resistors in Y are transformed to three 3Ω resistors in Δ. The voltage across the 1Ω resistor is $21_{x} \mathrm{~V}$. It follows from KVL around the outer loop that $V_{S R C}=4 I_{x}$, so that the voltage of the rightmost node with respect to the bottom node is $V_{S R C} / 2$. From

KCL at the bottom node, $I_{S}=\frac{V_{S R C}}{2}+\frac{V_{S R C}}{6}+\frac{V_{S R C}}{3}=$
$V_{S R C} \mathrm{~A}$.
Version 1: $V_{S R C}=5 \mathrm{~V} ; I_{S}=5 \mathrm{~A}$
Version 2: $V_{S R C}=10 \mathrm{~V}$; $I_{S}=10 \mathrm{~A}$
Version 3: $V_{S R C}=15 \mathrm{~V}$; $I_{S}=15 \mathrm{~A}$
Version 4: $V_{S R C}=20 \mathrm{~V}$; $I_{s}=20 \mathrm{~A}$
Version 5: $V_{S R C}=25 \mathrm{~V}$; $I_{S}=25 \mathrm{~A}$.

20\%

7. Determine the power delivered or absorbed by the dependent source, assuming

$$
V_{S R C}=1 \mathrm{~V} .
$$

Solution: Initialize: All given parameters and
 variables are entered. The nodes are labelled.
Simplify: The circuit is already in a simple enough form.
Deduce: From Ohm's law, the current $l_{a c} \quad\left(V_{S R C}-V_{X}\right) / 2 \quad\left(V_{S R C}-3 V_{X}\right) / 2{ }_{\mathrm{b}}\left(V_{S R C}+V_{X}\right) / 2$ is $V_{x} / 1=V_{x} \mathrm{~A}$; from KVL around the mesh on the LHS, the voltage drop across the 2Ω resistor is ($V_{S R C}-V_{X}$), and the current flowing from
 $V_{S R C}$ to node 'a' is $\left(V_{S R C}-V_{X}\right) / 2$. From KCL at node 'a', $l_{a b}=\left(V_{S R C}-V_{X}\right) / 2-V_{X}=\left(V_{S R C}-3 V_{X}\right) / 2$. From KCL at node 'b', the current through the 2Ω resistor on the RHS is $I_{b c}=\left(V_{S R C}-3 V_{x}\right) / 2+2 V_{x}=\left(V_{S R C}+V_{x}\right) / 2$. From KVL around the outer loop $V_{x}-1 \times\left(V_{S R C}-3 V_{x}\right) / 2-2 \times\left(V_{S R C}+V_{x}\right) / 2=0$, or $2 V_{x}-V_{S R C}+3 V_{x}-2 V_{S R C}-2 V_{x}=0$, which gives $V_{x}=V_{S R C}$. Hence, $V_{b c}=2 \times\left(V_{S R C}+V_{X}\right) / 2=2 V_{S R C}$. The power delivered by the dependent source is $P=2 V_{S R C} I_{a}=4\left(V_{S R C}\right)^{2} \mathrm{~W}$.

Version 1: $V_{S R C}=1 \mathrm{~V} ; P=4 \mathrm{~W}$
Version 2: $V_{S R C}=2 \mathrm{~V} ; P=16 \mathrm{~W}$
Version 3: $V_{S R C}=3 \mathrm{~V} ; P=36 \mathrm{~W}$
Version 4: $V_{S R C}=4 \mathrm{~V} ; P=64 \mathrm{~W}$
Version 5: $V_{S R C}=5 \mathrm{~V} ; P=100 \mathrm{~W}$.

20\%

8. Determine V_{o}, given that the six, unmarked Y -connected resistors are 2 Ω each, and assuming $I_{S R C}=3 \mathrm{~A}$.
Solution: The 2Ω, Y-connected resistors are transformed to $6 \Omega, \Delta$ connected resistors. 6Ω are paralleled with each of the outer 3Ω resistors to give 2Ω. The resistance in the middle is
 $6||6|| 3=1.5 \Omega$. The resistive circuit in the middle becomes as shown. The upper delta is transformed to a Y-connection as shown. $3 / 5.5 \Omega$ in series with 2Ω is $14 / 5.5 \Omega$. The two $14 / 5.5 \Omega$ in parallel are $7 / 5.5 \Omega$. In series with $4 / 5.5 \Omega$, this gives 2Ω. The resistors reduce to 2Ω in parallel with 4Ω and $4 / 3 \Omega ; 2 \Omega$ in parallel with 4Ω is $4 / 3 \Omega$; in parallel with $4 / 3 \Omega$ this gives $2 / 3 \Omega$. It follows that $V_{O}=2 I_{S R C} / 3 \mathrm{~V}$.

Version 1: $I_{S R C}=3 \mathrm{~A} ; V_{O}=2 \mathrm{~V}$
Version 2: $I_{S R C}=6 \mathrm{~A} ; V_{O}=4 \mathrm{~V}$
Version 3: $I_{S R C}=9 \mathrm{~A} ; V_{O}=6 \mathrm{~V}$
Version 4: $I_{S R C}=12 \mathrm{~A} ; V_{O}=8 \mathrm{~V}$
Version 5: $I_{S R C}=15 \mathrm{~A} ; V_{O}=10 \mathrm{~V}$.

20\%
9. Determine V_{S}, assuming $R=10 \Omega$.

Solution: Successive source transformations are applied to reduce the circuit to a simple enough form. The 25 V source in series with 20Ω is transformed to a 1.25 A current source in parallel with 20Ω. In parallel with 80Ω the resistance is 16Ω. The 1.25 A current source in parallel with
 16Ω is transformed to a 20 V source in series with 16Ω. In series with 24Ω the resistance is 40Ω. The 20 V source in series with 40Ω is transformed to a 0.5 A source in parallel with 40Ω. In the same manner,
 the 20 V source in series with 40Ω on the RHS is transformed to a 0.5 A source in parallel with 40 Ω, as shown. The two 40Ω resistors in parallel give a resistance of 20Ω and the two 0.5 A source add to a 1 A source, as shown. From KCL, the current
 in the 20Ω resistor is 1.5 A , and the voltage across the paralleled elements is 30 V . It follows that $V_{S}=30+0.5 R \mathrm{~V}$.
Version 1: $R=10 \Omega ; V_{s}=35 \mathrm{~V}$
Version 2: $R=20 \Omega ; V_{s}=40 \mathrm{~V}$
Version 3: $R=30 \Omega ; V_{S}=45 \mathrm{~V}$
Version 4: $R=40 \Omega ; V_{S}=50 \mathrm{~V}$
Version 5: $R=50 \Omega ; V_{S}=55 \mathrm{~V}$.

